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LARGE-SCALE WIND-TUNNEL TESTS OF A DEFLEETED SLIPS= 

STOL MODEL WITH WINGS O F  VARIOUS ASPECT RATIOS 

By V. Robert Page, Stanley 0. Dickinson, 
and Wallace H. Deckert 

Ames Research Center 

A wind-tunnel inves t iga t ion  was conducted t o  determine the  longi tudinal  
force  cha rac t e r i s t i c s  of a large-scale  model representat ive of  a propel le r -  
driven STOL t ranspor t  a i r c r a f t .  Longitudinal cha rac t e r i s t i c s  were obtained 
f o r  a wing of  aspect r a t i o  of 5.7 t h a t  was f u l l y  immersed i n  the propel ler  
s l ipstream and f o r  wings of grea te r  span (up t o  aspect r a t i o  8.1) t h a t  were 
only p a r t i a l l y  immersed i n  the propel ler  sl ipstream. Test configurations 
included: t h ree  wing spans, fu l l - span  leading-edge s l a t s ,  fu l l - span  t r i p l e -  
s lo t t ed  t ra i l ing-edge f l a p s  def lected from Oo t o  looo, two d i rec t ions  of  
p rope l le r  ro ta t ion ,  and spanwise var ia t ion  of propel le r  thrust. 

Test r e s u l t s  show t h a t  l i f t  coef f ic ien t  increased and drag coef f ic ien t  
decreased as  the wing t i p s  were extended outboard. Maximum l i f t  coef f ic ien t  
appeared t o  be l imi ted  by f l o w  separation between the  nacel les  on a l l  config- 
ura t ions ,  even though the  wing t i p  of the high aspect r a t i o  configuration was 
not protected by the  propel le r  sl ipstream. Leading-edge s l a t s  control led the 
progression of  f l o w  separation and extended the  angle of a t t ack  f o r  m a x i m  
l i f t  approximately 10' (e.g., f o r  a thrust coef f ic ien t  of 2.5, the  angle of 
a t t ack  f o r  m a x i m u m  l i f t  f o r  the  80° f l a p s  on the  short  wing was extended from 
16O t o  approximately 25'). 

For each wing span t e s t ed  descent capab i l i t y  could be improved by span- 
wise var ia t ion  of propel le r  th rus t .  However, the  spanwise var ia t ion  of pro- 
p e l l e r  t h rus t  was most e f f ec t ive  on the  short  span wing. 

INTRODUCTION 

Reference 1 indicated there  was a lack  of  systematic experimental 
r e s u l t s  t o  a id  i n  the  design of advanced propel le r  driven STOL a i r c r a f t .  
A m e s  Research Center therefore  studied a large-scale  def lected s l ipstream 
configuration i n  the 4 0 -  by 80-foot wind tunnel. 
study i s  typ ica l  of a conventional propel le r  -driven t ransport  a i rplane capable 
of operating i n  and out  of 1000 t o  2000 foot  runways. 

The model employed i n  the 

The object ives  of t h i s  inves t iga t ion  were t o :  (1) determine the bas ic  
longi tudinal  aerodynamic cha rac t e r i s t i c s  of a model whose wing was p a r t i a l l y  
or f u l l y  immersed i n  the  propel le r  sl ipstream, (2) determine the e f f e c t  of 
propel le r  ro t a t ion  on the  s t a l l  progression across the  upper surface of t he  



wing, and (3) determine the  effect  of t he  spanwise va r i a t ion  of propel le r  
thrust across t h e  wing span on the  l i f t  and drag cha rac t e r i s t i c s  of t he  model. 
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NOTATION 

wing span, f t  

wing chord p a r a l l e l  t o  fuselage center  l i n e ,  f t  

mean aerodynamic chord 

measured drag. 
CIS 

drag coe f f i c i en t  including thrust, 

measured l i f t  
qs 

l i f t  coe f f i c i en t  including th rus t ,  

i t ch ing  moment pitching-moment coef f ic ien t ,  P 
qsc 

normal-force coe f f i c i en t  

propel le r  diameter, f t  

v propel le r  advance r a t i o ,  - nD 

l i f t  including thrust, lb 

propel le r  r o t a t i o n a l  veloci ty ,  rps  

free-stream dynamic pressure,  lb/sq f t  - 
Reynolds number, 

I-L 

propel le r  blade radius ,  f t  

wing area,  sq f t  

t o t a l  thrust of a l l  four  propel lers ,  lb  

t h r u s t  coef f ic ien t ,  - T 
CIS 

free-stream tunnel  veloci ty ,  f p s  

chordwise dimension from leading edge 

v e r t i c a l  dimension perpendicular t o  chord 

l a t e r a l  dis tance from airplane center  l i n e  

wing angle of a t tack,  deg 

propel le r  blade angle, deg 



propel le r  blade angle a t  3/4 r f o r  inboard and outboard propel lers ,  
re s pe c t ive l y  , de g 

descent angle, deg 

t o t a l  a f t  f l a p  def lec t ion  re la t ive t o  l o c a l  wing chord, deg 

d i f f e r e n t i a l  spanwise f l a p  def lec t ion .  Numerator i s  f o r  f l a p  inboard 
i s  f o r  f l a p  outboard 

coef f ic ien t  of v i scos i ty ,  s lugs/f t -sec 

mass dens i ty  of a i r ,  s lugs/f t3  

MODEL AND APPARATUS 

Figures l ( a )  and ( b )  a re  photographs of the model i n s t a l l e d  i.n the  

Figure 2 ( a )  i s  a three-view drawing of the  model. 
40- by 80-foot t e s t  sec t ion .  The model w a s  t es ted ,  as  shown, without a hor i -  
zontal  t a i l .  

The a i r f o i l  sec t ion  of the wing was an NACA 632-416 with the r e f l e x  on 
the a f t  pQr t ion  of t he  lower surface f a i r e d  out .  The shor t  wing span was 
43.34 f e e t  ( f i g .  2 ( a ) )  wi th  an aspect r a t i o  D f  5.71. Short wing t i p  exten- 
s ions changed the span t o  47.94 f e e t ,  and longer t i p s  extended the  span t o  56 
fee t  with an aspect r a t i o  of 8.06. Additional information about the wing and 
t a i l  geometry i s  given i n  table I. 

A cross sec t ion  of t he  wing leading-edge s l a t  and t ra i l ing-edge t r i p l e -  
s l o t t e d  f l a p  i s  shown i n  f igu re  2 (b ) .  
def lec ted  100' with respec t  t o  the  wing chord l i ne .  For f l a p  def lec t ions  of 
80° or less, t h e  f o r e f l a p  w a s  se t  a t  ha l f  the  t o t a l  def lec t ion  of t he  a f t  
f lap .  For a f l a p  de f l ec t ion  of looo, t he  fo re f l ap  w a s  def lected bo0. Coor- 
d ina tes  f o r  t he  wing leading-edge s l a t ,  t ra i l ing-edge  foref lap ,  f ixed  vane, 
and a f t  f l a p  are l i s t e d  i n  table 11. 

The t ra i l ing-edge  f l a p  could be 

The geometric c h a r a c t e r i s t i c s  of t h e  three-bladed model propel le rs  are 
presented i n  f i g u r e  3. The s o l i d  aluminum propel le rs  were 9.3 f e e t  i n  d i a -  
meter and had an a c t i v i t y  f a c t o r  of 121 pe r  blade.  Each propel le r  w a s  s h a f t  
mounted on a gearbox and driven by an e l e c t r i c  motor. The f o u r  motors w e r e  
operated i n  p a r a l l e l  from a variable frequency power supply. 
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TEST AND PROCEDURE 

Tests w e r e  made a t  free-stream ve loc i t i e s  from 31 t o  49 knots (q  = 3.1 
t o  8 psf ,  corresponding t o  a Reynolds number range of 2.4 t o  4.1 mi l l ion) .  
During each run the  angle of a t t ack  of the  model was var ied while the tunnel 
dynamic pressure,  p rope l le r  speed, and propel le r  blade angle were held fixed. 

The propel le r  thrust ( f i g .  4) was ca l ib ra t ed  from wind-tunnel t e s t s  with 
t h e  model a t  t h e  angle of a t t ack  f o r  zero l i f t  with the  f l a p s  re t rac ted .  Pro- 
p e l l e r  t h rus t  was defined as  the  sum of the  measured thrust of the  model with 
the  propel le rs  operating and the  measured drag of t he  model with propel lers  
removed. For runs with a l l  p rope l le rs  set  f o r  equal th rus t ,  the  inboard and 
outboard propel le rs  were set a t  a blade angle of  16O a t  t he  three-quarter  
radius  s ta t ion .  To obtain the  spanwise va r i a t ion  of  p rope l le r  thrust t h e  
inboard propel le r  blade angle was l e f t  a t  16O while the  outboard propel le r  
blade angle was s e t  a t  0'. 
assumed t o  be independent of outboard thrus t ,  t he  two inboard propel lers  pro- 
duced a high pos i t ive  value of  thrust while the t w o  outboard propel le rs  gave 
a s l i g h t l y  negative value. 

With t h i s  blade se t t ing ,  and inboard thrust 

Aerodynamic coef f ic ien ts  were based on the  f l aps - r e t r ac t ed  reference wing 
area f o r  each o f  the  three  wing spans evaluated. Pitching-moment coe f f i c i en t s  
were computed about a moment center  a t  0.25 c .  

CORRECTIONS 

Cook and Hickey (ref. 1, p. 447) suggested applying standard wind-tunnel 
wal l  correct ions f o r  t h i s  s i ze  STOL model. The following correct ions were 
made t o  account f o r  the  wind-tunnel wal l  in te r fe rence  e f f e c t s :  

Short -span wing a = a c 0.652 C r ,  
U 

Lu2 CD = CQ + 0.01138 C 

Medium- span wing 

Long-span wing 

a, = a c 0.674 C h  
U 

c 0.01176 c 
cD = crt. Lu 

= a -I- 0.706 ch 
U 

F2 CD = cDU c 0.01232 c 
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The subscr ipt  u stands f o r  measured r e s u l t s  uncorrected f o r  wind-tunnel wal l  
e f f ec t s .  

A drag t a r e  cor rec t ion  (A€!,= 0.03) was applied t o  account f o r  the  drag 
of the  port ions of the  mounting struts exposed t o  the  wind-tunnel a i r  flow. 

RESULTS 

The main r e s u l t s  of t h i s  inves t iga t ion  a re  summarized i n  f igu res  5 
through 10. These f igu res  a re  b r i e f l y  discussed i n  the  next sect ion.  I n  t h e  
i n t e r e s t  of completeness, t he  bas i c  data  a re  presented (without discussion) 
i n  f igu res  11 through 13. Figure 11 presents the data  for the  short-span 
wing; f igu re  12 presents  t he  da ta  f o r  the  medium-span wing; and f igu re  1.3 pre-  
sents  the  data  f o r  the  long-span wing. Table I11 i s  an index t o  these bas i c  
data  f igures .  

DISCUSSION 

Figures 5 ( a ) l  and (b)  present the l i f t  and drag coef f ic ien ts  f o r  the  
three  wing spans with t ra i l ing-edge f l a p s  def lected 80° f o r  t w o  t h r u s t  coef- 
f i c i e n t s .  
extending the  l i f t  curves, with only the top  port ion of the  curves shown f o r  
c l a r i t y .  These data  show tha t ,  as  the  wing t i p s  were extended, l i f t  coef f i -  
c i en t  increased and the  drag coe f f i c i en t  decreased. L i f t  coef f ic ien t  increased 
with wing span even though the  por t ion  of the  wing outs ide the  sl ipstream was 
not as  highly loaded as  t h a t  ins ide  the  sl ipstream. Some ins ight  i n to  t h i s  
r e s u l t  i s  obtained from the  pressure d i s t r ibu t ion  data  ( r e f .  2 ) .  
and (b) present t he  span loading (normal-force coe f f i c i en t  versus spanwise 
pos i t ion)  of a short-span wing compared with the  longer span wing and show 
t h a t  as  the  t i p  i s  extended beyond t h e  sl ipstream, there  i s  an addi t iona l  
increment of " l i f t  carryover" from the t i p  inboard. 

Figure 5(c)  presents  t he  e f f e c t  of the  leading-edge s l a t s  i n  

Figures 6 (a )  

The angle of a t t ack  f o r  maximum l i f t  was l imi ted  by f l o w  separation 

With the  f irst  
between the nacel les .  
o f  the fo re f l ap  ( 0 . 7 ~ )  on the  upper surface o f  the wing. 
d i rec t ion  Qf propel le r  ro t a t ion  ( i .e . ,  f l  ) , separation 
began a t  low pos i t ive  angles of  a t t ack  and progressed rap id ly  t o  the  
leading edge of the  wing. 
( i .e . ,  f3 ) t u f t  observations indicated t h a t  separation 
was delayed, but  t h i s  e f f e c t  was not r e f l ec t ed  i n  the force data. The 
leading-edge s l a t s  prevented t h i s  forward progression of flow separation, 
and the  angle of a t t ack  f o r  m a x i m u m  l i f t  w a s  extended approximately loo. 

The onset of flow separation occurred j u s t  forward 

With the  second d i r ec t ion  of  p rope l le r  ro t a t ion  

'On f igu re  5(a)  the  da ta  f o r  the long span wing were interpolated from 
measurements obtained a t  TL = 0, 2.0, and 4.0. 
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Incremental f l a p  l i f t  coef f ic ien t  and drag coe f f i c i en t  as  a funct ion of 
f l a p  def lec t ion  a r e  presented i n  f igures  7 and 8 f o r  the medium-span wing f o r  
three t h r u s t  coef f ic ien ts ,  with t h e  leading-edge slats re t rac ted ,  and f o r  an 
angle of a t t ack  of Oo. Figure 7 shows t h a t  t h e  f l a p  effect iveness  approached 
theo re t i ca l  values f o r  T' = 0 ( r e f .  3) up t o  f l a p  def lect ions of 60°. 

C 

Figure 9 presents  the  var ia t ion  of drag with maximum l i f t  coef f ic ien t  
f o r  t he  three  wing spans with leading-edge s l a t s  extended, 800 f l a p  def lect ion,  
th ree  values of  thrust coef f ic ien t ,  and with and without spanwise var ia t ion  of  
p rope l le r  thrust. 
be optimum f o r  a l l  configurations t e s t e d  a t  equal approach speeds. The r e s u l t s  
presented i n  f igu re  9 show t h a t  spanwise va r i a t ion  of propel le r  thrust g rea t ly  
increased descent angle (e.g., f o r  a constant l i f t  coef f ic ien t  o f  7 the  descent 
angle was approximately doubled with TA 
given CL, descent angle decreased as  the  wing span was extended. Also, as  the  
wing span was extended, spanwise va r i a t ion  of p rope l le r  thrust became l e s s  
e f f ec t ive  as  a means of  increasing descent capab i l i t i e s .  

I n  terms of descent performance, the 80° f l a p s  appeared t o  

= 1.5 compared t o  T& = 2.5). For a av 

Since the  model with the  medium span wing resembles the a i r c r a f t  i n  the 
f o r  the  model and f o r  the %ax f l i g h t  report  of reference 4, a comparison of  C 

f l i g h t  a i r c r a f t  i s  presented i n  f igure  10. The comparison i s  made f o r  a 
landing configuration (6-p 100/60 model; 6f 98/65 f l i g h t )  with and without 
leading-edge s l a t s  i n s t a l l e d  on the  model. The wing leading edge on the  
f l i g h t  a i r c r a f t  had a drooped nose (4.5 percent extended chord) outboard of  
the inboard nacel le ,  whereas the model had f u l l  span 0 . 2 ~  s l a t s  as  shown i n  
f igu re  2 (b ) .  The cor re la t ion  appears t o  be reasonable s ince the f l i g h t  data  
f a l l  between the  wind-tunnel data  f o r  the  s l a t s  r e t r ac t ed  and s l a t s  extended 
configurations.  

CONCLUDING RFSIARKS 

A s  the  wing t i p s  were extended beyond the  immersed port ion of the wing, 
l i f t  coef f ic ien t  increased and drag coef f ic ien t  decreased. For a given 
landing configuration, t h e  descent angle decreased as  the wing t i p  was 
extended. Spanwise var ia t ion  of  p rope l le r  thrust was e f f ec t ive  i n  increasing 
descent capabi l i ty ,  but  was most e f f ec t ive  when used on the short  span wing 
t h a t  was f u l l y  immersed i n  the propel le r  sl ipstream. Maximum l i f t  coef f ic ien t  
appeared t o  be l imited by flow separation between the  nacel les  - not by flow 
separation over the unimmersed wing t i p s .  

Leading-edge s l a t s  were e f f ec t ive  i n  cont ro l l ing  flow separation and, 
f o r  each wing span tes ted ,  extended the  angle of  a t t ack  for maximum l i f t  
approximately 10'. I n  addition, t he  use of leading-edge s l a t s  allowed an 
increase i n  the  angle of descent and r a t e  of s ink  f o r  a constant approach 
speed. 

Ames Research Center 
National Aeronautics and Space Administration 

Moffett Field,  Cal i f . ,  94035, Nov. 16, 1967 
721-01 -00 -16 -00 -21 
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Dimens ion  

TABLE I. - MODEL GEOMETRY 

~~ ~ - ~~ 

Area, sq f t  
Span, f t  
Mean aerodynamic chord, f t  
Aspect r a t i o  
Taper r a t i o  
T w i s t ,  deg 
Dihedral, deg 
NACA a i r f o i l  s ec t ion  
Sweep of leading edge, deg 
Sweep of  t r a i l i n g  edge, deg 
Root chord, f t  
Tip chord, f t  

- ~- ~- 

Short 

329 
43.34 
7.80 
5-71 
0.554 

0 
0 

632 - 416 
2.88 
-8.57 
9.77 
5.41 

~~ 

- .. . 

Wing span 

Medium 
~- 

352.8 
47-94 
7.62 
6.52 
0.507 

0 
0 

632 - 416 
2.88 
-8 57 
9-77 
4.95 

~ 

Long 
- 

389.3 
56 

7.30 
8.06 
0.424 

0 
0 

632-416 
2.88 
-8 57 
9.77 
4.14 

. -.  - 

Vertical  
t a i l  

- 

86.9 
11.22 
8.26 
1.45 
0.389 

0 
0 

63A013 
31.33 

0 
11.17 
4.34 

8 
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TABLE 11. - COORDINATES OF LEADING-EDGE SLAT AND TRAILING-EDGE TRIPLE 
SLOTTED FLA€ 

X 
Leading-edge s l a t ’  

0 
25 

9 50 
75 

1.00 
1.50 
2.00 
2.50 
3 
4 
5 
6 
7 
8 
10 
12 
14 
16 
18 
20 

YU 

1.50 
1.98 

2.63 
3.12 
3.50 
3.78 
4.02 
4.37 
4.58 
4.66 
4.65 
4.57 
4.17 
3.58 
2.84 
1.98 
1.07 
.08 

0.40 

2.34 

T r a i l i n g  -edge vane3 

0 
.1 
.2 
-3 
.4 
.5 
75 

1.0 
1.5 
2 
2.5 
3 
3.5 
4 
4.5 
5 
5.5 
6.0 

0 
.44 
9 63 
77 

, .88 
1.00 
1.18 
1.33 
1.52 
1.62 
1.62 
1.57 
1.46 
1.28 
1.06 
78 
45 
.1 

YL 

0 
-.36 
-.50 
-.58 
-.65 
-.68 
-.68 
-.6 
-*3 
.04 
9 32 
.48 
9 53 
53 
47 
36 
.20 
03 

PERCENT CHORD 

Trailing-edge fo re f l ap2  

X 

0 
15 
-3 
95 
-75 
1.0 
2 
3 
4 
5 
6 
7 
8 
9 
10 
12.6 
12.76 
15 
17.5 
20 

YU 
0 

= 9  
1.32 
1.73 
2.15 
2.5 
3.44 
4.13 
4.62 
4.97 
5.22 
5.38 
5.49 
5.53 
5.52 
5.33 
5.30 
4.92 
4.42 
3 -85 

0 
-1.25 
-1.62 
-2.0 
-2.35 
-2.60 
-3 14 
-3.32 
-3.28 
-3.18 
-3 09 
-3.00 
-2.90 
-2.81 
-2.72 
-2.48 

2.50 
3.53 
3.80 

0 

Trailing-edge a f t  f l a p 4  

0 
925 
.5 
75 

1 
1.5 
2 
2.5 
3 
4 
5 
7- 5 
10 
12.5 
1.5 
1-7.5 
20 
21.4 

0 
1.12 
1.58 
1.92 
2.16 
2.5 
2-77 
2.95 
3.08 
3.21 
3 925 
2.85 
2-35 
1.85 
1933 
983 
9 32 
.02 

YL 

0 
-09 

-1 24 
-1.45 
-1.62 
-1.78 
-1.83 
-1.80 
-1.76 
-1.66 
-1.57 
-1.33 
-1.08 
-e85 
-.62 
-037 
-.15 
-.03 

‘Leading-edge r ad ius  = 1.9; slope of r ad ius  l i n e  through leading edge of 

2Leading-edge rad ius  = 3.0 
=Leading-edge r ad ius  = 0.85 
*Leading-edge r ad ius  = 1.8 

s l a t  = 0.20 
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A -  3 1 3  6 7  (a)  Front view. 

Figure 1.- Model i n  the Ames 40- by 8 0 - ~ o o t  Wind Tunnel. 



(b) Rear v i e w .  

Figure 1. - Concluded. 

A - 3 1 3 6 9  
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I -- 23.97 ' 
28 0-1 
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r 9 . 3  Diom. 

I 
6.0 Diom. I I 

+- 8.34 

,629-24.64 

- - 

-' 4 6 . 0 0  

(a) Three views of model; dimensions in feet .  

Figure 2.- Model geometry. 



y=-.omc 

Y=-.O538c .\ 

(.b) Geometry of leading-edge s l a t  and t r i p l e - s l o t t e d  flap. 

Figure 2. - Concluded. 

Figure 3.- Prope l l e r  blade c h a r a c t e r i s t i c s .  
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Figure 4.- Variat ion of  p rope l le r  thrust coe f f i c i en t  with propel le r  advance 
r a t i o .  
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( a )  T,' = 1.0, clean leading edge. 

Figure 5.- Variation of lift with drag and angle of a t tack  f o r  three wing spans, with 80' f l a p  
def lect ion.  
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(b) Tc' = 2.5, clean leading edge. 

Figure 5 . -  Continued. 
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Figure 5. - Concluded. 
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( a )  Clean leading edge. 

0 
Figure 6.- Variation of normal force with span position, 80 f l a p  deflection, Tc' = 2.5, a = 0'. 



Iu 
I 0 

(b) With leading-edge s l a t s .  

Figure 6. - Concluded. 
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Figure 7.- Variat ion of f l a p  l i f t  increment with f l a p  de f l ec t ion  f o r  three 
t h r u s t  coe f f i c i en t s ,  c lean leading edge, a, = Oo, medium span wing. 
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Figure 8.- Variat ion of flap drag increment with f l a p  def lect ion,  c lean  
leading edge, CL = Oo, medium span wing. 
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Figure 9. - Variation of drag a t  m a x i m u m  l i f t  f o r  t h ree  wing spans, 80' f l a p  
def lec t ion ,  with leading-edge s l a t s  extended, with and without spanwise 
va r i a t ion  of propel le r  thrust. 

23 

I 



9 

8 

7 

6 

5 

4 

3 

2 

I 

8/65 

Leading edge 
Clean 
Full-span slats 
(Ref. 3) Drooped outboard 

of inboard nacelle 

0 I 2 3 
Tc ' 

Figure 10.- Variat ion of  CL with thrust coef f ic ien t  f o r  the model with the  
medium span wing as compared with the  a i r c r a f t  of reference 3. 
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(a) 6f = Oo, propellers o f f ,  clean leading edge. 

Figure 11.- Longitudinal characteristics of the model with the short-span wing; tail o f f .  
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Figure 11. - Continued. 
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Figure 11. - Continued. 
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(d) 6f = 40°, clean leading edge. 

Figure 11. - Continued. 
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Figure 11. - Continued. 
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(f) 6f = 80°, clean leading edge. 

Figure 11. - Continued. 
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( g )  gf = 80°, full-span slats.  

Figure 11. - Continued. 
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Figure 11. - Continued. 
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(i) Ef = 40/20, clean leading edge. 

Figure 11. - Continued. 
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Figure 11. - Continued. 
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(k) 6f = 100/60, clean leading edge. 

Figure 11. - Concluded. 
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Figure 12.- Longitudinal cha rac t e r i s t i c s  of the model with the medium-span wing; t a i l  off. 
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Figure 12. - Continued. 
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( c )  6f = 40°, clean leading edge. 

Figure 12. - Continued. 
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(d)  6f = bo, ful l -span s la ts .  

Figure 12.- Continued. 
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Figure 12. - Continued. 
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Figure 12.- Continued. 
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Figure 12.- Continued. 
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Figure 12. - Continued. 
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Figure 12. - Continued. 
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Figure 12. - Concluded. 
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Figure 13.- Longitudinal charac te r i s t ics  of the  model with the long span wing; tail off. 
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Figure 1.3. - Continued. 
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